

DELIN COMM LIMITED

Tel:0086-755-29015125

Mail:info@delincomm.com
Web:www.delincomm.com

General Description

The DB1818P-GGB is a receiving module that supports single-band&multi-mode. It has built-in highly integrated GNSS receiver chip, supports multi band and multi system cm4f (main frequency 350mhz, 22nm Technology) chip of Third-generation BeiDou Navigation Satellite System (BDS-3). Besides, it is capable of tracking all global civil navigation systems (BDS,GPS,GLONASS,Galileo,QZSS,and SBAS) in all bands.

DB1818P-GGB module is based on the state of art BDS-3 architecture, integrating Single-band and multi-system GNSS RF and base band. This newly designed architecture makes this single chip achieve sub-meter level position accuracy without correction data from ground-based augmentation station and higher sensitivity, greater for improved jam resistance and multipath, provide a highly robust service in complicated environment.

DB1818P-GGB module contains
BK1616P positioning engine inside, featuring high sensitivity, low power consumption, and fast TTFF. The superior cold start sensitivity allows it to acquire, track, and get position fix autonomously in difficult weak signal environment. The receiver's superior tracking sensitivity allows continuous position coverage in nearly all outdoor application environments. The high performance signal parameter search engine is capable of testing 16 million time-frequency hypotheses per second, offering superior signal acquisition and TTFF speed.

Applications

- LBS (Location Based Service)
- PND (Portable Navigation Device)
- Vehicle navigation system
- Mobile phone

Figure: DB1818P-GGB
Top View

Features

- Build on high performance, low-power BK1616P chip set
- Ultra high Track sensitivity: -165dBm
- Support Windog function, and RTC
- Concurrent reception of single-band and multisystem satellite signals
- Supports all civil GNSS signals
- Supports BDS-3 signal
- Extremely fast TTFF at low signal level
- Multipath detection and suppression
- Works with passive and active antenna
- Low power consumption: Max 32mA@3.3V
- NMEA-0183 compliant protocol or custom protocol
- Operating voltage:3.0V~5.5V
- Patch Antenna Size: 18x18x4mm
- Small form factor: $18.3 \pm 0.5 \times 18.3 \pm 0.5 \times 6.8 \pm 0.5 \text{mm}$
- Interface type: 0.8mm 3Pin connector, L= 45 ± 5 mm
- Weight: Approx. 7.7g ($\pm 3\%$)
- Operating temperature $-40 \sim +85$ °C
- RoHS compliant (Lead-free)

1. Functional Description

1.1. Key Features

Table 1: Key Features

Parameter	Specification					
Power supply	• Supply voltage: 3.0V~5.5V Typical: 3.3V					
	Acquisition: 32mA @VCC=VBAT=3.3V					
Power consumption	• Tracking: 30mA @VCC=VBAT=3.3V					
	Backup: 14uA @VBAT=3.3V					
GNSS engine	• 96 tracking channels with fast search engine					
	GPS/QZSS: L1					
	• GLONASS: G1					
GNSS reception	GALILEO: E1					
	BEIDOU: B1I, B1C					
	• SBAS: WAAS, EGNOS, MSAS, GAGAN					
NMEA messages	• \$GNGGA,\$GNGSA,\$GPGSV,\$BDGSV,\$GLGSV,\$GAGSV,\$GNRMC					
Update rate	GNSS: 10Hz maximum, 1Hz by default					
Desition accuracy	• GNSS: <1.5m CEP					
Position accuracy	• SBAS: <1.5m CEP					
	GNSS: 0.01m/s CEP					
Velocity & Time accuracy	• SBAS: 0.05 m/s					
	• 1PPS: 20 ns					
	Hot start: 1s					
Time to First Fix(TTFF)	• Cold start: 28 s					
	• AGPS: 1.5s					
	• Cold start: -148dBm					
Sensitivity	• Hot start: -165dBm					
Sonsitivity	• Re-acquisition: -159dBm					
	Tracking & navigation: -165dBm					
GNSS Operating limit	• Velocity: 515m/s					
ONSS Operating mint	Altitude: 18000m					
Datum	• Default WGS-84, User definable					
	UART Port: TXD					
UART Port	 Supports baud rate from 9600bps to 961200bps, 9600bps by default. 					
UAKI PUL	 NMEA 0183 Protocol Ver./4.10, BK GNSS Receiver Protocol 					
	Supports batch data report mode					
	• Normal operation: -40°C ~ +85°C					
Temperature Range	• Storage temperature: $-40^{\circ}\text{C} \sim +105^{\circ}\text{C}$					
	• Humidity: 5% ~ 95%					

1.2 Power Supply

Regulated power for the DB1818P-GGB is required. The VCC Pin Need a stable DC voltage supply. Power supply ripple must be less than 30mV. The input voltage Vcc should be $3.0V\sim5.5V$, Recommended power supply voltage is 3.3V. maximum current is 32mA. Suitable decoupling must be provided by external decoupling circuitry.

1.3 UART Ports

The module supports two full duplex serial channels UART. All serial connections are at 3V CMOS logic levels, if need different voltage levels, use appropriate level shifters. The baud rate of both serial ports are fully programmable, the data format is however fixed: X, N, 8, 1, i.e. X baud rate, no parity, eight data bits and one stop bit, no other data formats are supported, LSB is sent first. The modules default baud rate is set up 9600bps, however, the user can change the default baud rate to any value from 9600bps to 961200bps. UART port can be used for firmware upgrade, NMEA output and PBK proprietary commands input.

2. Application

The module is equipped with a 3-pin connector that connects to your application platform. The DB1818P-GGB module It consists of a BK1616P single chip GPS IC which includes the RF partand Baseband part, a patch antenna, a LNA, a SAW filter, a TCXO, a crystal oscillator,

Also comes with a 007F crystal capacitor, can backup satellite ephemeris about 2 hour.

2.1. Pin Assignment

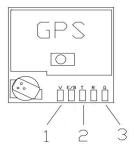


Figure 1: Pin Assignment

Table 2: Pin Definition

Pin No.	Pin name	I/O	Description	Remark
1	GND_black	G	Ground	
2	VCC_red	I	Module Power Supply	Voltage range: 3.0V~5.5V
3	TXD_yellow	O	UART Serial Data output	

DELIN COMM LIMITED

Tel:0086-755-29015125
Mail:info@delincomm.com
Web:www.delincomm.com

3. Mechanical Dimensions

This chapter describes the mechanical dimensions of the module.

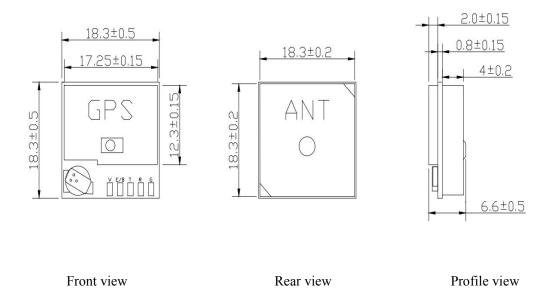


Figure 2: Specification size chart

4. NMEA 0183 Protocol

The output protocol supports NMEA-0183 standard. The implemented messages include GGA,GSA,GSV, RMC,GLL,VTG messages. The NMEA message output has the following sentence structure: AACCC, c-c*hh.

The formats of the supported NMEA messages are described as follows:

\$GNRMC,\$GNGLL,\$GNGGA,\$GNGSA\$GPGSV,\$BDGSV,\$GLGSV,\$GAGSV,\$GNVTG

4.1 GGA – Global Positioning System Fix Data

Time, position and fix related data for a GNSS receiver. Structure:\$GNGGA,hhmmss.sss,ddmm.mmmm,a,dddmm.mmmm,a,x,xx,x.x,x,x,M,x.x,M,x.x,M,x.x,xxx*hh For example:\$GNGGA,175258.000,2447.0870,N,12100.5221,E,2,15,0.7,95.2,M,19.6,M,,0000*72

Field	Name	Example	Description
1	UTC Time	175258.000	UTC of position in hhmmss.sss format, (000000.000 ~ 235959.999)
2	Latitude	1 2/1/17/ NX7/NN	Latitude in ddmm.mmmm format Leading zeros transmitted

Tel:0086-755-29015125

Mail:info@delincomm.com Web:www.delincomm.com

3	N/S Indicator	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
4	Longitude	12100.52210	Longitude in dddmm.mmmmm format Leading zeros transmitted
5	E/W Indicator	Е	Longitude hemisphere indicator, 'E' = East, 'W' = West
6	Quality Indicator	2	Quality Indicator 0: position fix unavailable 1: valid position fix, SPS mode 2: valid position fix, differential GPS mode 3: GPS PPS Mode, fix valid 6: Estimated (dead reckoning) Mode
7	Satellites Used	15	Number of satellites in use, $(00 \sim 56)$
8	HDOP	0.7	Horizontal dilution of precision, (0.0 ~ 99.9)
9	Altitude	95.2	mean sea level (geoid), (- 9999.9 ~ 17999.9)
10	Geoidal Separation	19.6	Geoidal separation in meters
11	Age pf Differential GPS data		Age of Differential GPS data NULL when DGPS not used
12	DGPS Station ID	0000	Differential reference station ID, 0000 ~ 1023
13	Checksum	72	

4.2 GSA – GNSS DOP and Active Satellites

GNSS receiver operating mode, satellites used in the navigation solution reported by the GGA sentence and DOP values.

For example:\$GPGSA,A,3,21, 12,15,18,20,24,10,32,25,13,,,1.2,0.7,1.0,1*18

Field	Name	Example	Description
1	Mode	A	Mode 'M' = Manual, forced to operate in 2D or 3D mode 'A' = Automatic, allowed to automatically switch 2D/3D
2	Mode	3	Fix type 1 = Fix not available 2 = 2D 3 = 3D
3	Satellite used 1~12	21, 12, 15, 18, 20, 24, 10, 32, 25, 13	01 \sim 32 are for GPS; 33 \sim 64 are for WAAS (PRN minus 87); 193 \sim 197 are for QZSS; 65 \sim 88 are for GLONASS (GL PRN); 01 \sim 36 are for GALILEO (GA PRN); 01 \sim 37 are for BDS (BD PRN). GPS, GLONASS, GALILEO and BDS satellites are differentiated by the GNSS system ID in table 3. Maximally 12 satellites are included in each GSA sentence
4	PDOP	1.2	Position dilution of precision (0.0 to 99.9)
5	HDOP	0.7	Horizontal dilution of precision (0.0 to 99.9)
6	VDOP	1.0	Vertical dilution of precision (0.0 to 99.9)

Tel:0086-755-29015125

Mail:info@delincomm.com

Web:www.delincomm.com

7	GNSS System ID	1	1 for GPS, 2 for GLONASS, 3 for GALILEO, 4 for BDS
8	Checksum	18	

4.3 GSV – GNSS Satellites in View

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites

For example: \$GPGSV, 4,1, 13, 02,72, 109, 43,24, 69,035, 48,18, 52,330, 42,21, 49,246, 43, 1*69

Field	Name	Example	Description
1	Number of message	4	Total number of GSV messages to be transmitted (1 - 5)
2	Sequence number	1	Sequence number of current GSV message
3	Satellites in view	13	Total number of satellites in view $(00 \sim 20)$
4	Satellite ID	02	$01 \sim 32$ are for GPS; $33 \sim 64$ are for WAAS (PRN minus 87); $193 \sim 197$ are for QZSS; $65 \sim 88$ are for GLONASS (GL PRN); $01 \sim 36$ are for GALILEO (GA PRN); $01 \sim 37$ are for BDS (BD PRN). GPS, GLONASS, GALILEO and BDS satellites are differentiated by the GNSS system ID in table 3. Maximally 12 satellites are included in each GSA sentence
5	Elevation	72	Satellite elevation in degrees, $(00 \sim 90)$
6	Azimuth	109	Satellite azimuth angle in degrees, (000 ~ 359)
7	SNR	43	C/No in dB (00 ~ 99) Null when not tracking
8	Signal ID	1	1 for L1/CA
9	Checksum	69	

4.4 RMC – Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver. Structure: \$GNRMC,hhmmss.sss,A,dddmm.mmmm,a,dddmm.mmmm,a,x.x,x.x,ddmmyy,,,a*hh For example:\$GNRMC,175258.000,A,2447.0870,N,12100.5220,E,000.0,000.0,220617,,,D*75

Field	Name	Example	Description
1	UTC time	175258.000	UTC time in hhmmss.sss format (000000.00 ~ 235959.999)
2	Status	A	Status 'V' = Navigation receiver warning 'A' = Data Valid
3	Latitude	2447.08700	Latitude in dddmm.mmmmm format Leading zeros transmitted
4	N/S indicator	N	Latitude hemisphere indicator 'N' = North 'S' = South
5	Longitude	12100.52210	Longitude in dddmm.mmmmm format Leading zeros transmitted
6	E/W Indicator	Е	Longitude hemisphere indicator 'E' = East 'W' = West
7	Speed over ground	000.0	Speed over ground in knots (000.0 ~ 999.9)
8	Course over ground	000.0	Course over ground in degrees $(000.0 \sim 359.9)$
9	UTC Date	220617	UTC date of position fix, ddmmyy format

			Mode indicator 'N' = Data not valid
10	Mode indicator	D	'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
11	checksum	75	

4.5 VTG – Course Over Ground and Ground Speed

The actual course and speed relative to the ground.

Structure: GNVTG,x.x,T,,M,x.x,N,x.x,K,a*hh

For example: \$GNVTG.000.0.T.M.000.0.N.000.0.K.D*16

Field	Name	Example	Description
1	Course	0.000	True course over ground in degrees (000.0 ~ 359.9)
2	Speed	0.000	Speed over ground in knots (000.0 ~ 999.9)
3	Speed	0.000	Speed over ground in kilometers per hour $(000.0 \sim 1800.0)$
4	Mode	D	Mode indicator 'N' = Data not valid 'A' = Autonomous mode 'D' = Differential mode 'E' = Estimated (dead reckoning) mode
5	Checksum	16	

4.6 GLL – Latitude/Longitude

Latitude and longitude of current position, time, and status.

Structure: \$GNGLL,ddmm.mmmm,a,dddmm.mmmm,a,hhmmss.sss,A,a*hh For example: \$GNGLL,2447.0870,N,12100.5221,E,175258.000,A,D*42

Field	Name	Example	Description
1	Latitude	2447.08700	Latitude in ddmm.mmmm format Leading zeros transmitted
2	N/S Indicator	N	Latitude hemisphere indicator 'N' = North 'S' = South
3	Longitude	12100.52210	Longitude in dddmm.mmmmm format Leading zeros transmitted
4	E/W Indicator	E	Longitude hemisphere indicator 'E' = East 'W' = West
5	UTC Time	175258.000	UTC time in hhmmss.sss format (000000.000 ~ 235959.999)
6	Status	A	Status, 'A' = Data valid, 'V' = Data not valid
7	Mode Indicator	D	Mode indicator 'N' = Data not valid 'A' = Autonomous mode 'D' = Differential mode 'E' = Estimated (dead reckoning) mode
8	Checksum	42	

5. Packaging Information

The following packing is for reference only, the specific packing information is subject to the actual delivery situation. Also, Packaging can be customized.

Packing Details

Unit: mm Quantity per tray:60pcs Quantity per carton: 720pcs

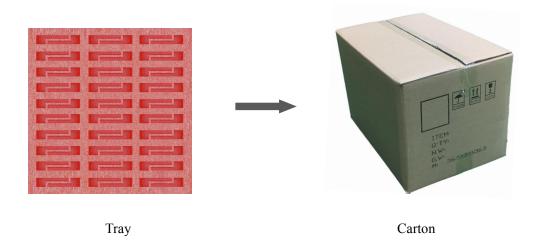


Figure 4: Packaging physical Figure

Model Name	MOQ for MP	Minimum Package: 720pcs
		Size: 365mm ×330mm ×365mm
DB1818P-GGB	720pcs	N.W: 5.544 kg
		G.W: $6.330 \text{ kg} (\pm 3\%)$